Deriving lexical and syntactic expectation-based measures for psycholinguistic modeling via incremental top-down parsing
نویسندگان
چکیده
A number of recent publications have made use of the incremental output of stochastic parsers to derive measures of high utility for psycholinguistic modeling, following the work of Hale (2001; 2003; 2006). In this paper, we present novel methods for calculating separate lexical and syntactic surprisal measures from a single incremental parser using a lexicalized PCFG. We also present an approximation to entropy measures that would otherwise be intractable to calculate for a grammar of that size. Empirical results demonstrate the utility of our methods in predicting human reading times.
منابع مشابه
Robust Probabilistic Predictive Syntactic Processing
of “Robust Probabilistic Predictive Syntactic Processing” by Brian Edward Roark, Ph.D., Brown University, May, 2001. This thesis presents a broad-coverage probabilistic top-down parser, and its application to the problem of language modeling for speech recognition. The parser builds fully connected derivations incrementally, in a single pass from left-to-right across the string. We argue that t...
متن کاملIntegrating Syntactic Priming into an Incremental Probabilistic Parser, with an Application to Psycholinguistic Modeling
The psycholinguistic literature provides evidence for syntactic priming, i.e., the tendency to repeat structures. This paper describes a method for incorporating priming into an incremental probabilistic parser. Three models are compared, which involve priming of rules between sentences, within sentences, and within coordinate structures. These models simulate the reading time advantage for par...
متن کاملMemory limitations in sentence comprehension: a structural-based complexity metric of processing difficulty
This dissertation addresses the question of how linguistic structures can be represented in working memory. We propose a memory-based computational model that derives offline and online complexity profiles in terms of a top-down parser for minimalist grammars (Stabler, 2011). The complexity metric reflects the amount of time an item is stored in memory. The presented architecture links grammati...
متن کاملWide-coverage probabilistic sentence processing.
This paper describes a fully implemented, broad-coverage model of human syntactic processing. The model uses probabilistic parsing techniques, which combine phrase structure, lexical category, and limited subcategory probabilities with an incremental, left-to-right "pruning" mechanism based on cascaded Markov models. The parameters of the system are established through a uniform training algori...
متن کاملIncremental Semantic Role Labeling with Tree Adjoining Grammar
We introduce the task of incremental semantic role labeling (iSRL), in which semantic roles are assigned to incomplete input (sentence prefixes). iSRL is the semantic equivalent of incremental parsing, and is useful for language modeling, sentence completion, machine translation, and psycholinguistic modeling. We propose an iSRL system that combines an incremental TAG parser with a semantically...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009